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We study the multiple minima problem for Lennard-Jones clusters using an effective potential which is a
function of the mean positionxj and fluctuationσ at finite temperature. It is shown that this method smooths
the potential energy hypersurface and facilitates the search for the global minimum. The method is applied
to small Lennard-Jones clusters from 2 to 19 atoms and is shown to give accurate results.

1. Introduction

In many physical and chemical problems, finding the most
stable structure is reduced to finding the minima of a complex
multidimensional hypersurface. The most important and tempt-
ing problem of this kind is the determination of the tertiary
structure of proteins, which is assumed to correspond to the
global minimum of free energy. Other problems that involve
multidimensional optimization are the study of the most stable
structure of Lennard-Jones clusters and finding of the ground
state of spin glasses. While all these problems can in principle
be stated in a very simple mathematical form, the solution is
considerably complicated because of the occurrence of myriads
of local minima, which renders most minimalization procedures
impractical. The complexity soon reaches the stage where an
exhaustive search of all minima of the hypersurface is no longer
manageable. To tackle this so-called “multiple minima prob-
lem”, a number of techniques have been developed.
Simulated annealing1 searches the potential energy hyper-

surface by molecular dynamics or a Monte Carlo method,
starting at a high temperature, which allows the method to cross
energy barriers of the orderkT. The system is then gradually
cooled, thereby decreasing the thermal fluctuations, until the
system is finally trapped in the global minimum (or a local
minimum).
Recently, a different approach to multidimensional optimiza-

tion was explored. Instead of locating the global minimum on
the original hypersurface, the hypersurface is smoothly deformed
into a surface that has a smaller number of local minima (or, in
the extreme, only one global minimum). Minimization is then
carried out on this simplified surface. After location of the
global minimum on the simplified surface, the position of this
minimum is followed as the deformation of the hypersurface is
reversed, until one reaches a minimum on the original surface.
Although there is no proof or justification for the assumption
that the global minimum will always map back onto the global
minimum, the method is very appealing and has been known
to give accurate results in a number of cases. In one approach,2,3

the hypersurface to be minimized is deformed by diffusion: the
original function is considered as an initial concentration, which
then diffuses according to the diffusion equation. By this
diffusion process, energy barriers are flattened, while wells in
the function become more shallow. This leads to the desired

simplification of the surface and allows the methodology
described above to be used.
An other approach is the use of the Schro¨dinger equation in

imaginary time,4 where one starts with the observation that the
minimum of the classical potential corresponds with a maximum
of the quantummechanical probability. This key observation
was first made in the use of the so-called quasi-quantal methods,
described in refs 5 and 6. In ref 4, the smoothing of the surface
is obtained by varying the Planck constant. For large values
of p, the system is likely to tunnel trough energy barries,
resulting in a simplified effective potential. The Planck constant
is then gradually reduced to zero to arrive at the minimum of
the original hypersurface.
Other methods using still other deformation methods include

the ant-lion strategy7 and the potential shift method.8

While in all methods cited thus far, the deformation is rather
artificial, a number of methods exist where the deformation of
the hypersurface is guided by some physical principle. This is
for instance the case for the Gaussian density annealing (GDA)
method,9 where the Bloch equation for the equilibrium density
distribution is approximately solved using a Gaussian ansatz.
For small values ofâ)1/kT this leads to a smoothing of the
surface, similar to the case of simulated annealing. The mapping
back to the original surface corresponds to the cooling of the
system. Moreover, the deformed hypersurface now has the
interpretation of the internal energy at a certain temperature,
which allows one to study the physical behavior of the system
as the temperature varies.
Straub and co-workers also developed a number of simulated

annealing methods based on approximate solutions of the
Liouville equation10 and the Smoluchowski equation11 which
also involve a deformed potential energy hypersurface.
Another method where the potential energy surface is

deformed in a more physical way is described in refs 12 and
13. In this approach, the system is considered on a spatial scale
that is determined by the physical temperature. Variations of
the hypersurface which are of this scale are described by
Gaussian packets, while variations on smaller scales are
absorbed in such a packet. It is demanded that the expectation
value of a “test function” with a certain length scale is equal
when calculated with the exact distribution functionpB and with
a coarse-grained distribution functionp̃R. The first three terms
in the series expansion of this condition lead to a set of equations
for the parameters that determinep̃R. We will discuss later an
interesting relationship between the method proposed in this
paper and the high-temperature limit of the method presented
in refs 12 and 13.
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Recently, we introduced the “effective diffused potential”
(EDP)14 as a method to approximately calculate the free energy
of a system. Here also, the deformation of the hypersurface is
physically motivated, instead of being just a convenient
mathematical trick. The method calculates an effective potential
that approximates the free energy at a certain temperature. The
smoothing of the original surface is obtained by considering
the system at high temperatures, where a minimum can easily
be found. By subsequently lowering the temperature, the
position of this minimum is followed, until one reaches the
original surface. Therefore, just as in GDA9 or in simulated
annealing,1 the parameter that controls the deformation is the
physical temperature. Not only does this method fit in with
the other deformation techniques, but it also allows one to
approximately calculate the free energy of the system at a certain
temperature. The deformed potential therefore has a clear
physical interpretation. Moreover, it provides a first principle
derivation of diffusion or smoothing type approach to global
minimization. In this paper however, we will study the method
only as a technique to isolate the global minimum on a rough
and complex hypersurface. As an example, we will consider
the determination of the most stable structure of clusters of
Lennard-Jones atoms, which has become a standard benchmark
to test the validity of a method.

In section 2, we briefly recapitulate the method to obtain the
effective potential. In section 3, a simple one-dimensional
example is studied to illustrate the method, and in section 4,
we study clusters of Lennard-Jones atoms up to 19 atoms. The
conclusions and outlook are given in section 5.

2. Effective Diffused Potential (EDP)

In this section, we outline the method to obtain the EDP.
More details can be found in ref 14. Our aim is to calculate an
effective potential that approximates the free energy at a certain
temperature. To do this, we start from the well-known Gibbs
principle,15 which states that the free energyF for a system
which is described by a potentialV can be found as the solution
of the following variational equation:

This means that the free energy is given by the minimal value
of the right-hand side of the above expression, where one
minimizes over all normalized distribution functionsP(x). The
functionPeq(x) that minimizes the expression is the equilibrium
density distribution. The complete variational problem is of
course a very impractical way of calculating the free energy.
One can however restrict the minimization to a certain subspace
of the space of all distribution functions, obtaining an upper
bound for the free energy by minimizing in the choosen subset.
A simple approximation would be to assume that the distribution
is localized near a postionxj and the fluctuations around this
position can be described by a Gaussian with dispersionσ. This
leads to the following ansatz forP(x):16

For a function of more than one coordinate, eq 2 can easily be
generalized by considering a multidimensional gaussian. In this
article, we will choose theN-particle distribution function as a

product of one-particle Gaussian functions:

By making the ansatz (2), the expression on the right-hand side
of (1) is now reduced to a function of a finite number of
variables, which allows one to find an approximation to the
free energy by solving a multidimensional optimization problem.
The explicit form of this (Gaussian) approximation is given by

Interestingly, this expression can also be found by taking the
high-temperature limit of the method presented in refs 12 and
13. We note however that the equations forxj and σ follow
from a different physical principle. In our case, they follow
straightforwardly from the Gibbs principle, while in refs 12 and
13 they express the equality of the expectation values calculated
with the exact and with a coarse-grained distribution function,
as discussed in the Introduction. An important difference lies
in the fact that with the EDP method higher order corrections
to (4) in 1/kTcan be calculated systematically,14 corresponding
to a non-Gaussian ansatz for the distribution function.
We note that the expression 4 can be written as a sum of

two terms:

These two terms can be interpreted as an effective internal
energy and an effective entropy, respectively. These are the
internal energy and the entropy in our approximation.
The parametersxj and σ can be found by solving the

minimum equations:

The free energy corresponds to the global minimum of these
equations. Other solutions can be seen as metastable states
which disappear as the temperature rises. This is similar to the
method of Gaussian packet states.12,13 The relationship and
hierarchy of these states was made explicit in an interesting
paper by Oresic and Shalloway.13 In this paper, we will mainly
be concerned with finding the global minimum however. The
meaning of other solutions will not be discussed here.
Equation 6 leads to the following equation forσ:

Upon substituting the solutionσ(xj,T) of (7) into (4), one obtains
a function that depends only onxj. We will denote this function
asVeff

D (xj,T) and call it the effective diffused potential (EDP).
The free energy of the system can now be found by minimizing
this function:

One can show14 that the Gaussian free energy (4) corresponds

F ) Min
{P}{E(P) - kT S(P)}

) Min
{P}{∫[dx] P(x) V(x) + kT∫[dx] P(x) ln(P(x))} (1)

P(x;xj,σ) ) 1

x2πσ
exp(-

(x- xj)2

2σ ) (2)

P({x},{xj},{σ}) ) ∏
i)1

N

P(xi;xji,σi) (3)

F(xj,σ,T)) 1

x2πσ
∫-∞

∞
dx V(x) exp(-

(x- xj)2

2σ ) -

kT
2
[ln(2πσ) +1] (4)

F(xj,σ,T) ) Ueff(xj,σ,T) - kT Seff(xj,σ,T) (5)

∂F(xj,σ,T)/∂xj ) 0

∂F(xj,σ,T)/∂σ ) 0 (6)

1
σ

) 1
kT

1

x2πσ
∫-∞

∞
dx V(x)[(x- xj)2

σ2
- 1

σ]exp(-
(x- xj)2

2σ ) (7)

Veff
D (xj,T) ) 1

x2πσ(xj,T)
∫-∞

∞
dx V(x) exp(-

(x- xj)2

2σ(xj,T)) -

kT
2
[ln(2πσ(xj,T)) + 1] (8)
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to the first two terms in the high-temperature expansion of a
convex effective potentialVeff(xj,σ) wherexj andσ are the mean
position and the fluctuation. Higher order corrections can in
principle be calculated. Furthermore,Veff

D (xj,T) (8), obtained by
minimizing (4) with respect toσ is an approximation to the
exact effective potentialVeff(xj,T), which is convex inxj.
A closer look at the effective potential (8) reveals some

simularities with the diffusion equation method (DEM) described
in refs 2 and 3. In the DEM, the potential is deformed by
considering the original function as an initial concentration,
which is then allowed to diffuse according to the multidimen-
sional diffusion equation in order to simplify the potential energy
hypersurface. The effective potential (8) can be viewed as
originating from the potential energyV(x) by some sort of
diffusion proces. Only in our method, the diffusion times can
be different for different coordinates, which was not possible
in the original DEM. Also the diffusion times are not chosen
arbitrarily in order to obtain a deformation that is sufficient to
easily find the global minimum, but they are determined in such
a way that they correspond with a minimum of free energy.
They depend not only on the temperature but also on the
configuration of the system. Most importantly, the effective
potential (8) that can be found using this method has a physical
interpretation, which is not the case for the diffused potential
in refs 2 and 3. The EDP is an approximation for the exact
free energy, which separates in an energetic and an entropic
contribution, as can be seen from eq 5.

3. A One-Dimensional Example

We will first study a one-dimensional example in order to
illustrate the method outlined above. We consider an asym-
metric double-well potentialV(x):

The Gaussian approximation to the free energy (4) is given by

The equation that determinesσ can be solved exactly in this
case and leads to the following form forσ(xj,T):

Which in turn leads to the following effective potential:

In Figure 1, we have plotted this effective potential for
different values ofkT. A number of observations can be made
from the form of the effective potential at different temperatures.
First of all, we note that at high temperatures, only one

minimum remains, which is located between the two original
minima ofV(xj). Most of the structure of the original function
has been wiped out. As we lower the temperature, the structure
of V slowly reappears. Two shallow wells appear, which deepen
as the temperature is lowered further. If we follow the unique
minimum at high temperature, we are guided into the deeper
well. As the temperature goes to zero, the minimum of the
effective potential goes to the global minimum of the original
function. This clearly illustrates the philosophy behind hyper-
surface deformation as a tool to find the global minimum of a
function.
A second important observation is that the effective potential

Veff
D (xj,T) does not seem to reduce to the original functionV(xj)

in the limit kTf 0 for all values ofxj. Indeed, if we consider

Figure 1. Effective diffused potential (solid line) compared with the potential energy (dashed line) for different values ofkT.

V(x) ) 2x4 - 4x2 - 1
2
x (9)

F(xj,σ,T) ) - kT
2
(ln(2πσ) + 1)+ 6σ2 + σ(12xj2 - 4)+ V(xj)

(10)

σ(xj,T) )
x(12xj2 - 4)2 + 24kT- (12xj2 - 4)

24
(11)

Veff
D (xj,T) ) -(kT/2)ln(σ(xj,T)) + 6σ(xj,T)2 +

σ(xj,T)(12xj2 - 4)+ V(xj) (12)
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the expression 11 whenkT f 0, we find

This means that the diffusion timeσ(xj,T) goes to zero only when
12x2 - 4 g 0. For the functionV under consideration, this
means∂2V/∂x2 g 0. The method therefore seems to discriminate
between convex regions (∂2V/∂x2 g 0) and concave regions (∂2V/
∂x2 e 0). This may seem strange at first, but it reflects an
important property of the exact free energy. If one could
calculate the effective potential exactly (i.e., beyond the
Gaussian approximation), one would find that it is everywhere
convex: ∂2VD/∂x2 g 0 for all values ofx. In the limit kT) 0,
the exact effective potentialVeff(xj) is the convex envelope of
V(x).14 The fact that the diffusion time remains nonzero in
concave regions results in a flattening of these regions, which
can be seen as a first onset towards convexity, which would
have to be exact if one could calculateVeff exactly (beyond the
Gaussian approximation).
This property also holds for other potentials than the one

considered in this paragraph, as can be seen from the equation
for σ:

where〈V〉 is the gaussian internal energyUeff, given by

Because〈V〉 is obtained fromV by diffusion, it obeys the
diffusion equation, which leads to

Combining (14) and (16), we find

Since the right-hand side of this equation is always positive,
the same must hold for the left-hand side. Sinceσ g 0, this
means that∂2〈V〉/∂xj2 must also be positive for all values ofxj. If
xj lies in a region where the original functionV is concave, this
can be achieved only by not lettingσ f 0 askT f 0, but by
keeping it fixed at a value for which〈V〉 is convex. Therefore
the effective potential does not reduce to the original potential
for regions that are not convex. However, sinceVD does
converge to the potentialV for convex regions, the method can
still be used to search for minima of the original function.
We note that a similar flattening of concave regions is clearly

visible in the double-well potential studied in ref 4, using the
Schrödinger equation in imaginary time. There the phenomenon
is explained by the fact that the equations of motion for the
Gaussian wave packet tend to increase the rate at which the
packet expands when it is situated in a region with negative
curvature, leading to a delocalization of the wave packet in these
regions.

4. Clusters of Lennard-Jones Atoms

The study of clusters of Lennard-Jones atoms originated
within the framework of nucleation theory. The most stable

configurations of these clusters have since then been the subject
of numerous studies. Since the number of local minima on the
potential energy hypersurface grows rapidly with the number
of particles in the cluster,17 an exhaustive search is almost
impossible for more than 13 particles. To study the most stable
configurations, a number of growth schemes were examined to
determine the most stable configuration.19 It was found that
for small numbers of particles, the most stable configurations
are compact packings with a pentagonal character, rather than
other common lattice structures. It is expected that for large
numbers of atoms, the most stable structure will become the
face-centered cubic lattice.

In this paper we want to study the most stable structures of
small clusters of atoms, interacting via two-body Lennard-Jones
potentials. We work with the standard form of the Lennard-
Jones potential, defined as follows:

The complete potential funtion of the cluster is given by the
sum of all possible two-body potentials:

We make the following ansatz for the multiparticle distribution
function:

One could consider anisotropic Gaussian packets by assigning
different dispersions to thex, y, and z components of the
coordinates, but we will not use this possibility here.

To obtain the effective potential, we have to calculate the
internal energy∫P(x) V(x). Because the potential is divergent
in the origin, the diffused potential cannot be calculated. It is
however physically sensible to replace the exact potential with
a form that is finite in the origin, as long as this form is a good
approximation to the exact potential in the physically relevant
domain. Therefore, we replace the actual two-body Lennard-
Jones potential with a four-term sum of Gaussians which gives
a very accurate approximation to the exact function, i.e.,V(r)
= ∑k)1

4 ake-bkr2. The amplitudes and dispersions are taken
from ref 4 and are collected in Table 1.

The internal energy is unlikely to be affected much by the
regularisation whenP(x) is small in the “unphysical” regions
(whereV becomes huge). Since the atoms are well seperated,
even on the smoothed surface, this condition will be fulfilled.

With the approximationVLJ(r) ) ∑kake-bkr2, the internal
energy is now easily calculated in closed form:

TABLE 1: Amplitudes and Dispersions for the
Four-Gaussian Fit to the Potential (18)

1 2 3 4

ak 846 706.7 2 713.651 -0.715 442 -9.699 172
bk 15.46 441 7.346 88 0.639 62 1.850 37

VLJ(r) ) 4( 1r12 - 1

r6) (18)

V) ∑
i>j
VLJ(| rbi - rbj|) (19)

P({xb},{xjB},{σ}) ) ∏
i)1

N 1

(2πσi)
3/2
exp(-

(xbi - xjBi)
2

2σi
) (20)

∫P(x) V(x) ) ∑
i>j

∑
k

ãk
(ij ) e-b̃k

(ij )|rjBi-rjBj|2 (21)

σ(xj,T)0))
|(12xj2 - 4)| - (12xj2 - 4)

24
(13)

kT
2σ

) ∂

∂σ
〈V〉 (14)

〈V〉 )∫dx P(x) V(x) ) 1

x2πσ
∫dx V(x) exp(-

(x- xj)2

2σ )
(15)

∂

∂σ
〈V〉 ) 1

2
∂
2〈V〉
∂xj2

(16)

σ
∂
2〈V〉
∂xj2

) kT (17)
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with

Because the clusters are not thermodynamically stable, they have
to be confined to a finite volume in order to calculate the free
energy, as is done in Monte Carlo simulations (see for instance
ref 20). For large values ofT, the entropy term drives the
dispersions to infinity when no confining force is imposed. We
will therefore use a confining potential in order to prevent the
clusters from dissociating. This potential is a harmonic potential
which biases the system toward small interatomic distances and
is of the form that was also used in ref 4:

The value ofλ should be sufficiently big to prevent dissociation
and sufficiently small in order not to significantly disturb the
minimum-energy configuration. In our calculations, we have
setλ ) 0.01 for all clusters, except for the smaller ones (N e
7), whereλ is between 0.02 and 0.05, because these clusters
seemed to require a larger value forλ in order to prevent the
atoms from escaping.21 The internal energy contribution from
this confining potential is also easily calculated:

Using (21), (24), and (5), we find the following expression for
F(xj,σ,T):

To find the minimum of the potential 19, the expression 25
was first minimized at high temperature (for all configurations
kT was chosen equal to 3.5), starting from a random configu-
ration in{xji} and with all dispersionσi set equal (typically equal
to 1). Minimization was carried out simultaneously in the
dispersions and the coordinates, regarding the free energy (25)
as a function of 4N parameters (3N coordinates andN disper-
sions). After a minimum (inσi and rjBi) had been found at this
temperature, the evolution of this minimum was followed as
the temperature was gradually lowered according to an expo-
nential cooling schemeTi ) RiT0, with R ) 0.96. Once a
minimum has been found at a certain temperature, the temper-
ature was lowered and the found minimum configuration was
used as a starting configuration for minimization at the new
temperature. To find the new minimum, we used a conjugate
gradient algorithm, the Fletcher-Reeves-Polak-Ribiere
method.22 After a minimum was reached forT = 0, the
confining potential was removed and the minimum configuration
was further refined using the exact Lennard-Jones potential.
Once a minimum has been found on the simplified surface at
the highest (starting) temperature, the trajectory of this minimum
is therefore fully deterministic, contrary to, for instance,
simulated annealing.
To eliminate the randomness introduced by chosing a random

initial configuration, the minimization was repeated from
different starting positions (typically 10 for each value ofN).
For almost all values ofN, the same minimum was recovered

on every trial, indicating that the method does not significantly
depend on the initial configuration. In a few cases, one of the
trials would end up in a different (local) minimum. This
happened very rarely (if it happened at all for a certain value
of N, only one trial out of ten would “miss”) and may be due
to the fact that the random configurations were chosen truely
at random, without checking whether they correspond to a
physically possible configuration. In ref 4 the configurations
were not generated ad random but chosen by takingN atoms
from an equilibrium liquid configuration of 256 atoms. The
fact that our configurations were “truely” random may account
for the few missed trials.

The results of our method are summarized in Table 2. From
Table 2 we learn that the agreement with the exactly known
values is indeed very good. Only for eight- and nine-cluster
atoms, the method ends up not in the global minimum but in
the first excited state. In the case of an eight-atom cluster these
states are very close in energy (less than 0.3%), which could
explain why the method seems to miss the global minimum.
We also remark that the coupling strength of the confining
potential (λ) can play a role in finding the global minimum. By
tuningλ to a precise value, one can sometimes make the system
end up in the different minimum. We have made no attempt
however to “optimize” the value ofλ for each value ofN.

The case of the 12-atom cluster merits special attention. Our
method correctly identifies the global minimum, which is a
Mackay icosahedron with one surface atom removed (see Figure
3). The DEM, on the other hand, identified a Mackay
icosahedron with the central atom removed as the final
structure.3 This may be due to the fact that the DEM uses the
same dispersion for all particles. This can result in a more
symmetrical configuration then when particles are allowed to
have different dispersions. In the case of the 12-atom cluster,
the dispersion of the “central” atom is considerably smaller than
that of the surface atoms, a fact that will be missed if all

ãk
(ij ) ) ak/(1+ 2(σi + σj)bk)

3/2

b̃k
(ij ) ) bk/(1+ 2(σi + σj)bk) (22)

Vconfine) λ∑
i>j
| rbi - rbj|2 (23)

λ∑
i>j
|rjBi - rjBj|2 + 3λ(N- 1)∑

i

σi (24)

F(xj,σ,T) ) -
kT

2
[3∑

i)1

N

ln(2πσi) + 3N] +

∑
i>j

∑
k

ãk
(ij )e-b̃k

(ij )|rjBi - rjBj|2 + λ ∑
i>j
|rjBi - rjBj|2 + 3λ(N- 1)∑

i

σi

(25)

Figure 2. Minimum energy structure of the 13-atom cluster. The atoms
are situated on the vertices and in the center of a Mackay icosahedron.

TABLE 2: Results from the Minimum Search of the
Effective Diffused Potential, Compared with the Exact
Results

no. of
atoms

no. of
minima

exact
result EDP

2 1 -1.000 -1.000 +
3 1 -3.000 -3.000 +
4 1 -6.000 -6.000 +
5 2 -9.104 -9.104 +
6 2 -12.712 -12.712 +
7 4 -16.505 -16.505 +
8 8 -19.822 -19.765 -
9 18 -24.113 -23.270 -
10 57 -28.420 -28.422 +
11 145 -32.765 -32.765 +
12 366 -37.967 -37.967 +
13 988 -44.327 -44.327 +
14 ∼3258 -47.845 -47.845 +
15 ∼10700 -52.322 -52.322 +
19 ∼2× 106 -72.659 -72.659 +
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dispersion are set equal. By allowing different dispersions, our
method therefore improves on a number of shortcomings of the
DEM.
Finally, we note that also the minimum of the 19-atom cluster

is identified correctly using our method, in contrast with the
result of the DEM. Here also, there are two dispersions which
are considerably smaller than the average dispersion.

5. Conclusion

We have applied the EDP method to the multiple-minima
problem of Lennard-Jones clusters. It was shown how this
method smooths the original surface, thereby eliminating
irrelevant minima. By searching the location of the minimum
at high temperature and tracking the evolution of this minimum
as the temperature is lowered, we have set up a deterministic
algorithm to find the global minimum on a complicated
multidimensional hypersurface. The method always gives very
good results, even when the global minimum is not correctly
identified, as is the case for eight- and nine-atom clusters.
Overall, it constitutes a considerable improvement of the
diffusion equation method.2,3

Moreover, the method we have proposed has a physical
interpretation. Since the effective potential is at every temper-
ature an approximation of the free energy at that temperature,
it can also be used to study the free energy of small clusters.
This is the subject of our present research.23 Finally, we note
that the use of Smoluchowski dynamics11 in the static limit (no
time dependence) leads to equations similar to (6) and (7). We
can easily combine these equations by directly minimizing in
the 4N-dimensional space of coordinates and dispersions. Also,
with the method proposed in ref 11 it is not possible to
approximately calculate free energies.
We also noted the relationship between our method and the

high-temperature limit of the method presented in refs 12 and
13. The physical principles behind both methods are quite
distinct, however, as are the computational techniques used to
find the solutions. In refs 12 and 13, the equations are solved
by iteration, while we perform a minimalization at each step.

Also, we feel that our method offers some computational
advantages. In ref 13, multidimensional integrals are evaluated
using Monte Carlo integration, while in ref 12 these integrals
are approximated by a factorized ansatz. This involves the
tabulation of the effective two-body potential for different
temperatures. While this is not problematic for Lennard-Jones
clusters, it will be much harder when different types of potentials
occur (e.g., Lennard-Jones potentials with coefficients dependent
on the type of atom pair).
Finally, our approach follows from a simple first principle

(the Gibbs principle) and allows for systematic corrections in
the 1/kT expansion to be calculated (see ref 14).
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Figure 3. Minimum energy structure of the 12-atom cluster, as
predicted by the effective diffused potential approach (left) and by the
DEM (right). The correct structure is a Mackay icosahedron with one
surface atom removed (left), while the DEM predicts a Mackay
icosahedron with the central atom removed (right).
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